

SpaceCharge Calibration into the future and demands on the trigger, now.

We think of our events like this ...

Data Taken June 25, 2000.

Most of our events look more like this ...

SpaceCharge from the events cause distortions

JT: 4 The Berkeley Lab

Two sources of SpaceCharge

- Beam gas and other up stream events
- not synchronous with our trigger
- Scales with beam intensity (not Luminosity)
- The collisions at STAR
- synchronous with out trigger
- Scales with Luminisity
- In the future, the average Luminosity will go up a factor of 40 but the beam intensity will only go up a factor of 2 to 4!
- We have to prepare for a significant increase in space charge due to the collisions in the detector.
- We have to be able to distinguish the two sources of distortion

We have to be able to distinguish the two sources of distortion

Model for the distortions

Old Model

- Beam gas events leave a uniform deposition of charge in the TPC
- The charge from the events is not significant

New Model

- Beam gas events leave a 1/R**2 distribution of charge in the TPC
- The charge from the events is not significant in the 2001 data, but in the future (including this year) ???

JT: 6 The Berkeley Lab

Jniform .vs. 1/R² Space Charge Distribution

Radial Distortions

A Wide Range of Distributions

DCA, Steering at the RICH, and □p

- The RICH Scaler has an arbitrary normilization
- The DCA's have been tuned to be the same in both cases
- □p is different by a factor of 2
- Steering at the Rich changes sign under these conditions

2 Equations, 2 Unknowns

- at the RICH due to the beam gas induced space charge We can simultaneously fit the DCAs and match the steering
- Choose the right charge distribution 1/R, 1/R², HiJet, etc.
- Choose the RICH scaler normalization constant

Conclusions

- SpaceCharge corrections are significant today
- And at 40x < L >
- Tools are available to calculate the corrections
- Two sources of spacecharge
- We need scalers and diagnostics for each source of charge
- Monitor £
- Monitor beam current
- The RICH Mult Scaler is gone
- We need a replacement
- Record all events where CTB hits exceed 16
- This is a job for the trigger group
- charge in the TPC for untriggered events. We need to track the beam current and/or the distribution of
- Ideas?
- Recent progess with the laser cluster finder means we will be taking laser data during the runs

Contingency Trigger Plan Needed

- RHIC ran protons last year and so they can do it again
- The proton run is a shoe-in
- But it is contingent on achieving 40%(?) polarization at the source
- deuteron beam There is a small probability that the machine folks can't run a
- Source to AGS transport problems
- RHIC tuning issues (first attempt at asymmetric beams)
- neutron background
- there will be a mad rush to run a different beam If the machine folks are forced to punt on either issue, then
- The exact choice of beams will be a long messy conversation, on short notice, in a smoke filled room.
- We need a contingency trigger plan for symmetric heavy ions
- Running at higher multiplicity than either p-p or d-Au